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the human and computer collaborate, they can discover solutions superior to the one either would have determined Independently of the
other. This research effort Investigates the strengths and limitations of both humans and computers in command and Control resource
allocation problems, and examines how humans and computer can work together collaboratively to promote efficient, effective, and
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1.0 Summary

In command and control domains, mission goals are driven by human intentions and actions, and
then executed and communicated through advanced, automated technology. Because the use of
complex, automated systems will only increase in the future, more research needs to specifically
address how humans and automation can collaborate with automation in mission planning and
decision making in dynamic and uncertain environments. Automation can make computations
quickly and accurately based on a predetermined set of rules and conditions, which is especially
effective for planning and making decisions in large problem spaces like those in command and
control domains. However, computer optimization algorithms can only take into account those
quantifiable variables identified in the design stages that were deemed to be critical. In contrast,
humans can reason inductively and generate conceptual representations based on both abstract
and factual information, thus integrating qualitative and quantitative information. While humans
are not able to integrate information as quickly as a computer and are sometimes susceptible to
flawed decision making due to biased heuristics such as anchoring and recency (Tversky &
Kahneman, 1974), their ability to leverage inductive reasoning and effective heuristics such as
bounded rationality (Simon et al., 1986) and fast frugal decision making (Gigerenzer & Todd,
1999) can compensate for optimization algorithms' inherent limitations.

The focus of this research program was the development of a collaborative human-computer
decision-making model that demonstrates not only what decision making functions should
always be assigned to humans or computers, but what functions can best be served in a mutually
supportive human-computer decision making environment. It is possible that when the human
and computer collaborate, they can discover solutions superior to the one either would have
determined independently of the other. This research effort investigated the strengths and
limitations of both humans and computers in command and control resource allocation problems,
and examines how humans and computer can work together collaboratively to promote efficient,
effective, and robust decision making.
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2.0 Research Accomplishments

1. Developed a Tactical Tomahawk mission planning simulation test bed, including the
development of a heuristic-search algorithm to match preplanned missions to various
missile loadouts.

2. Developed increasingly automated decision support tools for the Tomahawk mission
planner.

3. Conducted an experiment with actual Naval personnel to examine human-computer
collaboration performance and related cognitive strategies for Tomahawk mission
planning.

4. Developed a preliminary model to capture cognitive strategies post hoc and determine
how automation does or does not support effective strategies. This tool is caused
Tracking Resource Allocation Cognitive Strategies (TRACS).
"* A technology disclosure was submitted to the MIT Intellectual Property office.
"* This tool has been used in three experiments, two ONR and one NASA.

5. Developed an initial prototype for a real-time Tomahawk/UAV retargeting decision
support tool within a larger simulation environment.

6. Developed the Human-Automation Collaboration Taxonomy (HACT) to allow for
better descriptive models of human-automation interaction.

7. Acquired the Mobile Advanced Command and Control Station, a mobile
experimental test bed, through an ONR DURIP

8. Published one journal article, one book chapter, and 5 conference papers.

3.0 Completed Experiments & Performance Data

3.1 Experiment #11

A pilot experiment was conducted in October 2005 to determine how operators would search a
complex mission planning solution space using three different interfaces, which represent
increasing levels of automation ranging from mostly operator-directed to mostly automation-
directed. The focus of the research
was to determine how solutions --. . ,-•-
would be generated, and the ; ...... ...
effectiveness of the combined bIIUja
performance of the human and the -.. ......
computer for the overall mission rE
goal. The first matching interface - .. u. .
(Figure 1) allows for manual ___,matching and computer generated • ••_ 4, ' ir-ir:;•.....

matching in the mission-missile E'_
resource allocation. The operator 1....- -,

selects a mission in the mission table
and a missile in the missile table
(among those which have been Figure 1 - StrikeView Matching Interface 1.

1 Described more in detail in Bruni, S., Cummings M.L., "Human Interaction with Mission Planning Search

Algorithms". ASNE Human Systems Integration Conference. 2005.
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filtered out by the computer as satisfying hard constraints). The tables display the primary
characteristics of the missions (Target, Route, Launch Basket, Navigation Equipment Required,
Priority, Warhead Required, and Number of Missiles Required), and those of the missiles (Ship,
Launch Basket, Navigation Equipment Available, Warhead). Then the operator manually adds
the match to the matching table. At the bottom left are warning tables that display the targets that
cannot be reached (no missile can fulfill the hard constraints requirements), and the unused
missiles. At the bottom right is a graphical summary of the current assignment, based on the
matches included in the matching table. The horizontal bars fill in according to the number of
targets assigned so far, with a breakdown by Target Priority. The operator can leverage a
computer planning tool, Automatch, in which an algorithm instantly generates a mission-missile
assignment and stores it in the matching table. Then, the operator has the option to manually
modify this solution if deemed necessary. The heuristic search algorithm implemented in
automatch sorts the missiles by priority. The missiles that have the fewest number of missions
they can fulfill based on hard constraints are ranked first (this is to increase the number of
assigned missions). Then, for each missile, the potential missions are prioritized in this order of
importance: 1) loiter missions (the missile hovers over an area waiting for an emergent target to
pop up), 2) high priority target, 3) medium priority target, and 4) low priority target. Firing rate
and days to port information are not yet embedded in this search algorithm, but will in future
developments of the software.

Interface 1 does not allow for any real •-- ----

collaboration between the human and • 1 7tT
the computer, only basic filtering. To _______..........
provide a collaborative decision space,
Interface 2 (Figure 2) allows operators
the ability to leverage the computer's .
computational power, under human ,- . -
guidance. Interface 2 still includes the . . -

mission, missile, and matching tables, • __,. . -
allowing for manual matching, and
automatch is also available.

Whereas in Interface 1 the matching
algorithm was completely hidden from
the operator, in Interface 2 the operator ]
can actually choose what criteria to
include in the automatch, as well as a HIT
prioritization order between these
criteria. Also, tick boxes next to the ;6"
mission and missile tables enable the I
user to select a subset of missions and / Figure 2 - StrikeView Matching Interface 2.
or missiles to be considered by
automatch. Furthermore, the
assignment summary evolved to include, in addition to the horizontal bars, two other graphics
that synthesize the assignment through the probabilistic (e.g. Firing Rate) and optimization (e.g.
Days To Port) data. Finally, this interface includes a "save" option. When used, the current
assignment is stored at the bottom of the screen, and a new assignment can be generated without
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modifying the saved assignment. This provides the user with a what -if comparison between two
solutions.

Interfaces I and 2 are both based on the use of raw data. Interface 3 (Figure 3) is completely
graphical and the user has no access to the mission and missile tables. The automatch button at
the top is similar to that in Interface 1. However, the user can act on the level of prioritization of
the probabilistic information (Firing Rate) and optimization information (Days To Port), in the
automated algorithm, via the central screen sliding bar (the "prioritization bar") that represents
what criteria (Firing Rate or Days To Port) should take precedence on the other in automatch.

The result of the assignment computed by automatch is displayed in two ways. First, the
breakdown by mission priority (loiter, high, medium, low) in the four comers shows numerically
and visually (position of the cursor in the vertical column) how many missions have been
assigned, with a secondary breakdown by Warhead type. Then, the green area above and below
the prioritization bar metaphorically represents the level of assignment: the more missions have
been assigned, the more filled in the central area is. A complete assignment (all missions
assigned) would be represented by a completely shaded central area. When the automatch
solution is modified by the user, the new solution appears in green, and the first automatch
appears as a pale gray in background, for comparison purposes.

Additionally, the user can
require the computer to search
the solution space to
accommodate specific needs:
by clicking on the up or down
arrows of the cursors in the
vertical sliders, the user
instructs the computer to find a
way to increase or decrease the
number of assignments
corresponding to the specific
slider. Automatch will then
compute a new solution to
accommodate for this

Figure 3 -StrikeView Matching Interface 3. requirement, by potentially
modifying other assignments
at higher priority levels.

In the experiment, six subjects participated in a cognitive walkthrough of the mission planning
interfaces, including a former TLAM Strike Coordinator, an Air Force ROTC Cadet, an Army
Infantryman with 18 years of experience, as well as three graduate students with extensive
backgrounds in UAV operation and Human-Computer Interaction, two of them being USAF 2nd

Lieutenants. A cognitive walkthrough evaluates how well a skilled user can perform novel or
occasionally performed tasks. In this usability inspection method, ease of learning, ease of use,
memorability, effectiveness and utility, among others, are investigated through exploration of the
system.

Seven usability questions were used to rate the three interfaces on a Likert scale from 1 to 10:
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1) How much perceptual effort is required to understand and use the interface?
2) How much mental processing is required to understand and use the interface?
3) How well would an operator perform with this interface?
4) How confused would an operator be using this interface?
5) How well does the interface give feedback to the user?
6) How much in control is the operator using the interface?
7) How satisfied vs. frustrated an operator would feel using the interface?

Two-tailed paired t-tests were performed on the ratings of the interfaces, between interfaces 1
and 2, 1 and 3, and 2 and 3. Using the Bonferroni criterion, the 0.05 level of significance was
divided by three and results were therefore considered significant at the 0.016 level. We assumed
that the parent population of the sample is normally distributed. Results are compiled in Figure 4
(significant differences between interfaces) and Figure 5 (no significant differences).

1) Perceptual Activity (Figure 4). The purely graphical interface (Interface 3) was considered to
require less perceptual effort than Interfaces I (p < 0.0004) and 2 (p < 0.003). This result makes
sense since the motivation behind the use of graphics is to minimize the need for and time spent
on searching for information. But such an advantage has a cost. First, less information is

available through the graphical
Usability Ratings interface, and then, the

12 . ... information is less precise, in
10 that fewer parameters are

visualized and accessible.
Therefore, and as mentioned by

I Lthe subjects, such a display
4 would mainly be used for a

rapid overview of the situation,
with a few, simple interaction

POe Arbviy MrftAc",,4 yo ,,, possibilities. This interface is

2 3 good for conveying
information, but insufficient for

Figure 4 - Significant Usability Ratings a comprehensive assignment
task.

2) Mental Activity (Figure 4). Interface 3 required significantly less mental activity, such as
thinking, deciding, calculating, remembering than Interface 1 (p < 0.006), and the difference with
Interface 2 was almost significant (p < 0.027). This reinforces the perceptual activity results: a
graphical interface is an efficient way to simply assess the situation without requiring the
operator to add a mental process to build another layer of understanding. Indeed, using Interfaces
1 and 2 forces the user to interpret the data on the display: this delays the decision and is also
subject to human errors, especially in a time-sensitive environment. In addition to ease of use
and attractive to the eye, a graphical interface also simplifies the chain of cognitive processes
required to understand and assess correctly the situation.

3) Projected Performance (Figure 4). The subjects estimated that Interface 3 would lead to better
projected performance than Interfaces 1 (p < 0.009) and 2 (p < 0.002). But most subjects
commented that the projected performance would be better with Interface 3 only if the
instructions for the assignment were kept simple. With straightforward instructions, assignment
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tasks would be done quickly and efficiently. However, as soon as the requirements and
constraints for the task increase, the limitation of this interface would surface as detailed
information and low level parameters are not accessible.

4) Confusion (Figure 5). No significant difference was found between the interfaces regarding
the confusion they may generate. Interfaces were rated between a score of 1 (very confusing) and
10 (not at all confusing), and an increasing trend was found: although more visually simple than
the table-based interfaces, the graphical interface tended to create more confusion. This may be
the result of the inability of Interface 3 to control low level parameters. It is simple and efficient
to use in a certain domain, but users' actions are limited: they may get confused because they do
not know how to use the interface for specific action (or they do not know that they cannot do
these actions). Raw data tables are less confusing because all information is available, and
although the interface is more complex, once learned, it may not be as confusing.

5) Feedback to the user (Figure 5). This criterion was rated between 1 (poor feedback) and 10
(excellent feedback). A trend emerges from the results: the graphical interface seemed to provide
better feedback to the user than Interface 2, which in turn was better than Interface 1. The
system's response to user's action is key in the assessment of an interface: the operator needs to
know that the intended performed actions have actually been performed. The graphical Interface
3 favors this criterion because change in the appearance of the screen as a result of the action is
noticed more by the user than a change in the information inside a huge table of resources. Also,
since Interface 2 provides more tools than Interface 1, and thus more feedback, it is
understandable that its ratings are slightly higher.

6) Control (Figure 5). As expected, Ubfn
Interface 2 was considered the
interface users were most in control 9
of, mostly because more options are 8
included in this interface. It is
interesting to see that this control 5
issue applies to "how many" actions 3

the user can perform, and not "how 2

much" the user can decide on the
assignment. Indeed, it can be that Conun FeA ,bUe mck S b, FU

the operator is provided with [ kftr., 1 .19.2 ok -da,3]
several automated tools, and hence Figure 5 - Non-significant Usability Ratings
feels "in control", while the real
control is held by the computer in
the way those tools are implemented (which is transparent to the user).

7) Satisfaction vs. Frustration (Figure 5). The rating scale went from very frustrated (1) to very
satisfied (10), and an increasing trend amongst interfaces can be seen. Satisfaction progressively
overcame frustration from Interface 1 to Interface 2 to Interface 3. This may be explained by the
trends noticed in all other areas: with a graphical interface, the operator needs less perceptual and
mental effort and is more in control, which contributes to an increased level of satisfaction.
Conversely, with Interface 1, the range of possible actions was strongly restricted, hence causing
frustration because of the inability for the users to do what they wanted.
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3.2 Experiment #22

As a result of the findings in experiment #1, the interfaces were modified to improve their
usability and a formal experiment was conducted to determine the impact of proposed levels of
human-computer collaboration on performance and cognitive strategies. To this end, twenty
subjects from the Surface Warfare Officers School Command (SWOSCOM), at the Naval
Station Newport, in Newport, RI, and from the Submarine Base New London in Groton, CT,
participated in a formal experiment to test the three interfaces. These subjects (18 males, 2
females) were aged 25 to 37 (mean: 30 ± 2.6 sd) and had between 4 and 18 years of service in
the U.S. Navy (mean: 8 ± 3.5 sd). While all had the same basic Navy strike training, two had
extensive experience with TLAM Strike planning (more than 500 hours each), and seven had
about 100 hours of experience each with TLAM Strike planning. Thirteen subjects had
participated in live operations or exercises involving the use of Tomahawks, and three additional
subjects had completed TLAM classroom training.

Five configurations of the StrikeView interfaces were tested: Interface 1 (I1), Interface 2 (12),
Interface 3 (13), Interfaces 1 and 3 together (113), and Interfaces 2 and 3 together (123). Subjects
were randomly assigned one interface configuration. Two scenarios involving the matching of 30
missions with 45 missiles were created which included a complete scenario (Scenario C), where
at least one solution existed for the matching of all missions, as well as an incomplete scenario
(Scenario I), where not all missions could be matched at the same time. Performance was
evaluated using a weighted objective function of the number of matches accomplished by the
operator, with a breakdown by priority.

70W0

Under Scenario C (all missiles have a 7 T
matching mission), all twenty subjects
reached the optimal performance score ,.

of 100 regardless of the interface
configuration they used, which means *,

that all subjects matched all missions, at
all levels of priority. Under Scenario I
however results were significantly
different. Figure 6 plots the mean
performance scores across subjects,
categorized by interface configuration.

For Scenario I, subjects using interface I 2 , 13 2.

1 (manual matching) or interfaces 2 and
3 together (collaborative matching and

Figure 6 - Performance results by interface, under
automatch) scored the best with an Scenario .

2 Detailed in Bruni, S., Cummings, M.L., 'Tracking Resource Allocation Cognitive Strategies for Strike Planning"

COGIS 2006 - Cognitive Systems with Interactive Sensors, Paris France.
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average of 69.75, while those using interfaces 1 and 3 together scored the worst, at an average of
68.00. For interfaces used in combination, interfaces 2 and 3 together led to significantly better
performance (average of 69.75) than interfaces 1 and 3 together (average of 68.00), which
statistically significantly scored lower than any other interface configurations. However, while
interface 3 performed the worst in terms of the single interfaces, Figure 6 shows that for Scenario
I, subjects using interface 3 all reached the exact same performance: there was little deviation in
performance for this condition.

In order to determine what cognitive strategies were implemented in solving this multivariate
resource allocation problem and correlate this with performance, we developed the "Tracking
Resource Allocation Cognitive LOI

Strategies" tool (TRACS) as a two- EVALUATE BACKTRACK UPDATE

dimensional representation. The two [I
axes, MODE and Level of Information BACKTRACK

Detail (or LOID) respectively
correspond to the general functionalities i,
as well as the information types
available. For this mission planning JJ ),BROWSE

software, the MODE axis includes the - " -1 DE

following functionalities: "browse", SELEC,

"search", "select", "filter", "evaluate", S SELECT AUTOMATCH

"backtrack", "automatch" and "update". Is
The LOID axis is partitioned to + '*- .... ".."... -,.

correspond to the data used by the
operator (above the x axis), while the Figure 7 - Example of a TRACS visualization

lower y axis represents the criteria - ,
used to search the domain space.
Within each sub-axis, LOID
elements were ordered to reflect the '
level of abstraction of the
information: "data item", "data if
cluster" (a group of data items with
at least one common characteristic),
"individual match" (a pair of I

matching data items, according to
the search criteria), and "group of
matches" (a cluster of individual b ,c .... -,. S.•,. ... t

m a t c h e s ) . T h e c r i t e r i a s u b -a x i s - _ _ _ _ _ _ v i u a l i z a t o n ,_ I n t r f a c e _ 1 , g o o d _p e f o r m a n c
featured, in order: "individual Figure 8- TRACS visualization, Interface 1, good performance

criterion" and "group of criteria".

Figure 7 displays an example of a cognitive strategy captured by TRACS. The underlying
assumption while using TRACS is that every mouse click on the interface is considered as a
conscious decision of the operator to interact with the DSS. Using a correspondence matrix for
the two axes, we map each click (its location on the interface) to a specific MODE and LOID
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entry in the matrix. For each click, a circle -

is added to the corresponding cell in the
TRACS visualization. If this cognitive step
is a repeated action, the width of the circle •
is increased. Cognitive steps are connected
to each other by a line when visited in 1A

sequence. Similarly, the thickness of these
lines increases each time such a connection Ii
is repeated.

Figures 8 and 9 display the TRACS
visualizations for two subjects who solved
the incomplete scenario using interface 1.

Figure 9 - TRACS visualization, Interface 1, poor

In terms of performance, the subject of performance
Figure 8 outperformed that of Figure 9,
and most significantly, the subject of Figure 8 validated the solution in 6 minutes while that of
Figure 9 took over 26 minutes. In both TRACS representations, a similar pattern of cognitive
steps emerges, linking the selection of individual matches, the selection of data items and the
search for data items. Although this structure clearly constitutes the core cognitive strategy of in
Figure 8, this same structure was weakly exhibited by the subject in Figure 9, who used several
additional steps which led to poorer performance.

Very similar TRACS visualizations were
. obtained when examining the cognitive

9 /- strategies of subjects using the interface
configuration featuring both interface 1
and 3. Figures 10 and 11 display the
TRACS representations for these subjects,
who respectively performed well and

ii poorly on Scenario I. The subject of
0 Figure 10 reached the best solution in less

than 5 minutes whereas that of Figure 11,
Zý. although coming within 5% of the best

solution, took more than 20 minutes to
-0 11- .... oto bacj.ck *t•"•-re uN complete the task. The subject of Figure

Figure 10 - TRACS visualization, Interfaces 1 and 3, 11 used the core strategy see previously,
good performance but to a lesser degree and secondary

cognitive steps, such as browsing (of data
items, data clusters and group of matches), or filtering (of data cluster), were repeatedly
performed. Other additional cognitive steps can be seen in Figure 11 such as backtracking on
group of matches (typically corresponding to the cancellation of the entire current solution), and
automatch (the use of the heuristic search algorithm). The TRACS visualization for the subject in
Figure 11 represents a very inefficient strategy, particularly in terms of time as compared to the
subject in Figure 10.
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A LFigure 12 shows the TRACS visualization
i "I,, of a subject who solved the problem using
W "interface 2 (collaborative matching) and

reached the best solution. As magnified by
the red square and triangle, this subject
clearly exhibited two distinct strategies
while solving the problem. First, he tried
to solve it using the manual tools, such as

e the mission and missile tables. After
browsing and searching this raw data, this
subject switched to the automated tools,
selected different criteria in order to
implement the automatch capability and

Figure 11 - TRACS visualization, Interfaces 1 and 3, then evaluated the computer-generated
poor performance solutions. The first strategy (manual

matching) lasted -3s before the subject
decided to save that solution and switch to the second strategy (automatch) which lasted only 2s

These results demonstrate that regardless of their configuration, all three interfaces led to very
good results, with performance averages per interface between 68 and 70 out of a possible 80.
The fact that the performances were very close despite the levels of automation may however be
a sign that the task on hand was no difficult
enough to require full automation support. --MANUAL MATCHING

Indeed, the best performances on the
incomplete scenario were obtained using
the mostly manual interface (interface 1) or ,.
the combination of the collaborative and
automatch interfaces (interfaces 2 and 3). -,
On the other hand, when the automatch
interface (interface 3) was paired with the
manual interface (interface 1), performance
decreased but remained acceptable. This
shows that adding an interface that led to A,

the best results (interface 1) to that which
led to the lowest results alone (interface 3)
did not lead to a better result, but to the Figure 12 - TRACS visualization, Interface 2, good
contrary, it decreased performance. perfornmance

3.3 Experiment #3

One of the specific focus areas of this research grant was to explore the difference in the way that
humans interacted with automated planners in static versus dynamic conditions (i.e., under time
pressure or not.) Once the first version of TRACS was completed, we recognized that
modifications were needed to incorporate the time element. Figure 13 demonstrates that a
temporal component was added in that a time bar and a playback feature were added across the
bottom so that a researcher could replay what strategies occurred as a function of time (Bruni,
Boussemart, & Cummings, 2007).
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Once this revision was complete, we
examined the effects of time pressure on the
use of the automation during the strike
planning process as described in the
previous experiment. Our main research
hypothesis was that people under temporal
stress will rely more on automated tools in
order to cope with the added workload.
Time pressure is very relevant to the context
of Command and Control (C2) since theaters
of operations are inherently dynamic; the -.

conjunction of changes and fixed deadline
tend to put the operators under considerable
stress due to the time-critical nature and the
importance of the decision they have to Figure 13: TRACS with Temporal Features
make.

Using Interface #2 (Figure 2), an experiment was conducted using the same incomplete planning
scenarios as described in the previous experiment, and subjects experienced two testing sessions:
Distant Deadline (DD), a low time-pressure, baseline task with a 5 min limit, and Imminent
Deadline (ID), which started just like the DD scenario with the same 5mn deadline, but at 3:30
mins, the subjects receive new orders to invert the priorities of the missions (low priority
missions should be regarded as high priority and vice versa). This required the subject to re-plan
the strike in the remaining lmn3Os, which corresponds to increased time pressure.

Sixteen subjects were tested, most of whom came from the MIT student population. When the
number of calls to the automation was correlated with a performance score that measured
submitted solution optimality, there were two significant Spearman-Rho correlations of note:

1) The number of calls to the automatch in the ID scenario and the final score in the ID
scenario (p=0.7 4 0, p=0.001), which means that people who used automation in that
scenario tended to do better.
2) The number of automatch calls between the ID and DD scenarios (p--0.855,
p<0.0001), which suggests that some people are comfortable with using the automation
and will tend to use it more often, whereas others will simply not use it. This confirms
subjective evidence gathered during the post-experimental debrief.

To specifically examine the effect of time pressure, we divided the DD scenario between the first
3mn3Os and the last lmn3Os in order to make direct comparisons with the ID scenario. A
comparison of the total number of automatch clicks between the ID and the DD scenarios was
significant (Mann-Whitney U Z=-2.558, p=0.01 1). These results were replicated when the
number of automatch calls between the 2 phases of the ID scenario were compared (Z=-2.077,
p=0.038). Thus, the majority of these calls came after the 3:30 change, so when the time pressure
increased, subjects tended to use automation more.

Using four broad categories of cognitive strategies based on the use of automation (fully manual,
mostly manual, mostly automated and fully automated), a non-parametric Mann-Whitney U test,
revealed a significant difference in strategy between the ID and the DD scenarios (Z=-2.33,
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p=0.02). Those subjects who experienced the higher time pressure generally used automation
more than those who did not. However, in the debrief session, multiple users reported that they
should have used the automation after the change of ROE, but were overwhelmed by the
additional workload and the time stress.

One other issue that this research raised was the impact of trust, or lack thereof, on performance.
Some subjects, all MIT students, refused to use the automation because they didn't like to use an
algorithm they were not familiar with and could generate suboptimal solutions. In essence,
subjects tried to optimize the solution manually, but had difficulty when the new orders came in
at 3:30. However, one subject was a very experienced US Air Force officer who designed flight
plans with the aid of a computer. His experience and training taught him to trust the automation,
and, according to the subject, even though the solution wasn't perfect it was considered to be
"good enough". He was able to leverage the automation to create a plan that was accepted as
good enough. While this needs to be investigated more fully, it appears that background and
experience could significantly influence trust and use of automation in time-pressured
environments.

While this research is preliminary (data analysis is still underway with the intent of publishing
these results), the results support our main research hypothesis, namely that, under time pressure,
subjects tend to use more automation than in a baseline, low temporal stress situation. This
experiment also highlighted the link between trust, experience, and performance needs to be
investigated further as this may provide insight as to the best transition path from platform to
network-centric warfare.

4.0 Time-Sensitive Targeting Interface Development

In order to more fully investigate the effects of time pressure on human-automation collaboration
in a dynamic command and control setting, an initial prototype of a time sensitive targeting
interface was created. This interface, based on the same mission planning environment as
described earlier, allows operators to redirect either Tomahawk missiles or unmanned aerial
vehicles (UAVs) to emergent (aka, pop-up) targets. The interface provides a geo-spatial map
environment as well as the decision support in Figure 14. This decision support allows operators,
at different levels of automation, to select one of many candidate UAVs or Tomahawks, while
considering the effects on the overall mission in terms of reallocating the other vehicles to
possible lost targets.

This is actually a very complex problem in that it is a moving horizon problem. The vehicles are
moving very quickly and those solutions that exist at the current time may not exist even just
minutes in the future. Moreover, reallocating a UAV from one set of targets to a higher priority
emergent target will likely cause gaps in the overall air tasking order so this adds to the workload
of the operator since they have to possibly replan all the other vehicle-target combinations in
order to maximize overall mission success. So the time-sensitive targeting problem is a nested
decision problem for the human - which vehicle should intercept the emergent target and how
should the remaining vehicles be reallocated to maximize mission success?

While this grant ended at the same time the prototype was completed, this work has been
extended through another ONR BAA: Human Supervisory Control Models for Command and
Control of Unmanned Systems. Under this program, work is underway to embed two different
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artificial intelligence algorithms that represent increasing levels of automation (on par with those
levels of automation represented in Experiments #1 & 2). Thus, as in these experiments, there are
3 interfaces: 1) Manual retargeting and re-routing, 2) Automation-assisted retargeting and re-
routing, which relies on a human-guided heuristic search algorithm (Figure 14, left), and 3) a
higher level automation generated solution using an anytime algorithm (Figure 14, right).

The decision support for the heuristic algorithm (Figure 14, left) provides windows of
opportunity for not just the emergent target, but for all targets affected by the reallocation of
missiles/UAVs. It also allows an operator to tailor a search for the best possible replan using
multiple variables such as time on target, priority of targets, and minimization of threat exposure.
This algorithm is not guaranteed to provide the best set of solutions (a common problem with
heuristic algorithms), but it is very fast and allows the human operator to easily generate
alternatives.

Figure 14: Decision Support for Time Sensitive Targeting

The decision support for the anytime algorithm (Figure 14, right) embeds a more complex
algorithm that theoretically will provide the best possible solution, given enough time to solve
the problem. This is an inherent problem with any algorithm that must solve a complex and large
problem such as the multiple vehicle - multiple target case. The heuristic algorithm circumvents
the time constraints but at the cost of solution quality. The anytime algorithm we will embed
accounts not only for the best solution (i.e., maximizing targets engaged), but it also accounts for
the cost of computation time. The decision support shows the operator how long the automation
needs to plan to come up with the best possible solution, but it also shows the operator when
other solutions of lesser quality could be available in advance of the most optimal solution. This
algorithm and the human interaction with it is more complex and at a higher level of data
aggregation than the heuristic algorithm so it remains to be seen how the less-than-optimal
heuristic algorithm which may be easier to understand fares against the more-complex-but-more-
accurate anytime algorithm in terms of human decision-making performance.

An experiment will be conducted this fall to determine how the different algorithms/automation
levels impact human decision-making in the time-sensitive targeting environment (similar to that
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of Experiment #2 & #3). We will also use the TRACS tool previously described to investigate
the associated cognitive strategies.

5.0 Collaborative Human-Computer Decision Making Model

As stated previously, one of the goals of this research effort was to develop a collaborative
human-computer decision-making model that demonstrates how and what decision making
functions should best be assigned to humans and computers in order to provide a mutually
supportive human-computer decision making environment. To this end, we propose a framework
that more accurately portrays collaborative decision-support systems beyond simply role
allocation, termed the Human-Automation Collaboration Taxonomy or HACT. HACT provides a
descriptive model to characterize and determine the degree to which a decision-support system is
collaborative, for evaluation and comparison purposes.

We define collaboration as agents acting in a coordinated effort to solve a problem. An agent
may be a human operator or an automated computer system, or "automation". HACT is only
based on interactions between two agents (a human operator and automation). Typically, human-
automation collaboration is an iterative process between the agents, and between the analysis and
decision steps, which will be addressed in more detail in the next section.

While several taxonomies have been developed to classify and describe interactions between a
human operator and a computer system, they are generally based on the concept of "level of
automation". Despite some variations, these levels of automation, or LOAs, refer to the role
allocation between the automation and the human (Parasuraman, Sheridan, & Wickens, 2000;
Sheridan & Verplank, 1978; Wickens, Gordon, & Liu, 1998). These LOAs emphasize particular
attributes, such as authority in the decision making process, solution generation abilities, or
scope of action. The relative importance of each attribute can vary tremendously across
command and control systems, hence, several scales have emerged, each typically focusing
around one or two specific attributes.

There are certain elements of human-computer collaboration that are not addressed in any of the
existing taxonomies. First, there is no mention of methods of whether or not the automation
should be more transparent to the operator, in order to maintain mode awareness and detection of
automation errors (Billings, 1997). Second, the exchange of information between agents is
important in any form of collaboration. Many systems claim to be collaborative but the manner
in which information is exchanged cannot be described as "mutual engagement," which is a key
attribute for collaboration. Finally, systems where the level of automation could change with
time either through human actions (adjustable autonomy) or independently (adaptive autonomy)
are not considered (Goodrich et al., 2007). This unique characteristic of a potential decision
support system should be considered as a step towards more elaborate forms of human-
automation collaboration. HACT takes into account both the important attributes highlighted by
previous LOAs and these missing attributes.

HACT features three steps: data acquisition, decision-making and action taking (Figure 15). The
data acquisition step is similar to that proposed by Parasuraman et al. (2000): sensors get the
information from the outside world or environment, and transform it into working data. First, the
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data from the previous step is analyzed, possibly in an iterative way where request for more data
is sent to the sensors. The data analysis outputs some elements of a solution to the problem at
hand. For example, in a mission planning situation, these elements of solutions may correspond
to the current or projected status of some battlefield assets. The evaluation block will estimate
the appropriateness of these elements of solutions for a potential solution. This block may initiate
a recursive loop with the data analysis block. For instance, it may request more analysis of the
domain space or part thereof to the data analysis block. At this level, sub-decisions are made to
orient the search and analysis process.

Once the evaluation step is validated, i.e., sub-decisions are made, the results are assembled to
constitute feasible solutions to the problem. In order to generate feasible solutions, it is possible
to loop back to the previous evaluation phase, or even to the data analysis step. At some point,
one or more feasible solutions are presented to a second evaluation step which will select one
solution (or none) out of the pool of feasible solutions. After this selection procedure, a veto step
is added, since it is possible for one or more of the collaborating agents to veto the solution
selected (like in management-by-exception). If it is vetoed, the output of the veto step is empty,
and the decision-making process starts over again. If the selected solution is not vetoed, it is
considered the "final solution" and is transferred to the action mechanism for implementation.

Within the decision-making process of Figure 15, three key roles have been identified:
Moderator, Generator, and Decider. In the context of collaborative human-computer decision
making, these three roles are fulfilled either by the human operator, by automation, or by a
combination of both. The Generator and the Decider roles involve parts of the model that are
mutually exclusive: the domain of competency of the Generator (represented by the blue square
to the left of Figure 15) does not overlap with that of the Decider (the green square to the right).
However, the Moderator's role (represented by the red, dashed arrows in Figure 15) covers the
whole decision-making process. Each role has its own scale, which lists the range of possible
human-computer role allocations.

Data Acqu. Decision-Making Process ModeratoActiontJ

sesos oltin J |solution | |Solutjo

dt"" (0 to 1) (to1 solution
e......t imple-

dmentation

Ssub-decisions

Figure 15. The collaborative information-processing model

5.1 The Moderator

The Moderator is the agent(s) that keeps the decision-making process moving forward
(represented by the red, dashed arrows in Figure 15). The Moderator makes sure that the process

15



goes from one block to another, and that the various phases are executed during collaboration.
For instance, the Moderator may initiate the decision-making process and interaction between
the human and automation. The Moderator may prompt or suggest that sub-decisions need to be
made, or evaluations need to be considered. It could also be involved keeping the decision
processing in pace when time deadlines must be met. The need for defining this role relates
directly to ten-level Sheridan-Verplank LOA scale (1978), where the difference between LOA 4
and 5 is who initiates generation of a solution (Parasuraman et al., 2000). However, we recognize
that this moderation occurs in multiple portions of the decision making process and separate
from the task of generating solutions and selecting them.

5.2 The Generator

The Generator is the agent(s) that generates feasible solutions from the data. Typically, the
Generator role involves searching, identifying, and creating solution(s) or parts thereof. Most of
the previously discussed LOAs (Endsley & Kaber, 1999; Parasuraman et al., 2000) address the
role of a solution generator. However, instead of focusing on the actual solution (e.g., automation
generating one or many solutions), we expand the notion of Generator to include other aspects of
solution generation, such as the automation analyzing data to make the solution generation easier
for the human operator. Additionally, it is acknowledged that the role allocation for Generator
may not be equally shared between the human operator and the automation. For example, the
Generator could involve a system where the human defines multiple constraints and the
automation searches for a set of possible solutions bounded by these constraints. However, a
higher level Generator would be one where the automation proposes a set of possible solutions
and then the human operator narrows down these solutions.

5.3 The Decider

The third essential role within HACT is the Decider. The Decider is the agent(s) that "makes the
final decision", i.e. selects the potentially final solution out of the set of feasible solutions output
by the Generator, and who has veto power over this selection decision. Veto power is a non-
negotiable attribute: once an agent vetoes a decision, the other agent cannot supersede it. The
veto power is also an important attribute that is described only in the Parasuraman et al. (2000)
LOA scale (upper levels). These aspects are embedded in existing LOAs but they are mixed and
incomplete.

The formulation of HACT essentially occurred at the conclusion of this research effort, with the
results published recently at the 2007 International Command and Control conference in
Newport, RI (Bruni, Marquez, Brzezinski, Nehme, & Boussemart, 2007). While the ONR grant
has formally ended, work has continued on this model, now funded by AFOSR through an
Architecture Science grant.

6.0 Mobile Advanced Command and Control System (MACCS) Status

With the 2006 award of a DURIP for a mobile experimental test bed, the Mobile Advanced
Command and Control System (MACCS) was recently completed (Figure 16). While the award
was announced in April, unfortunately contractual snags prevented any purchases to be made
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until July. Even with this delay, we have successfully purchased a 2006 extended Dodge Sprinter
van, equipped it with GPS tracking alarm systems, and acquired the advanced displays and
equipment. The van is now fully operational and we have held demonstrations at the Navy's
ASNE Human Systems Integration Symposium in Annapolis, MD in March 2007, and also at
NUWC and the ICCRTS conference in June at Newport, Rhode Island. MACCS was also
recently featured in the ONR online newsletter, the Navigator
(http://www.onr.navv.mil/media/nre navigtator). The first formal experiments are scheduled
for the van in August and September in support of two ONR contracts, as well as an AFOSR
contract.

Figure 16: MACCS on display at the 2007 ASNE Human Systems Integration Symposium

7.0 Technology Transition Efforts

In an effort to broaden the impact of this research, significant work is underway to transition the
lessons learned from this ONR project. These efforts include:

" Three ONR STTRs are underway that are directly leveraging the results from this project:
"o Plan Understanding for Mixed-initiative control of Autonomous systems (Partner:

Charles River Analytics), in Phase II
"o Human-Directed Learning for Unmanned Air Vehicle Systems in Expeditionary

Operations (Partner: Stottler Henke), in Phase I
"o Onboard Planning System for UAVs Supporting Expeditionary Reconnaissance

and Surveillance (Partner: Aurora Flight Sciences), in Phase I
"* Combat Systems of the Future Phase 2 SBIR with the Mikel, Assett Inc., and Rite

Solutions (MARS) Coalition
"* Capable Manpower Future Naval Warfighting Capability Human Systems Integration,

ONR BAA 07-013, with the Mikel, Assett Inc., and Rite Solutions (MARS) Coalition
(Contract will start in FY08).

"• Human Supervisory Control Models for Command and Control of Unmanned Systems,
ONR BAA (DEC06-NOV09)
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"* Architecture Science: Creating Visualizations for High Level Decision Makers, AFOSR
BAA

"* Collaborative Time Sensitive Targeting, Boeing Phantom Works
"• Joint Warfighter Test and Training Capability Collaborative Metrics Applied to Manned

Ground Vehicle Systems, US Army & Booz Allen Hamilton (contract in progress)
"* A formal agreement for collaborative research and technology transition has been signed

between the MIT Humans and Automation Laboratory and NUWC Newport.
"• OCT 05 and DEC 06 briefings to the Navy's Strategic Studies Group in Newport, RI.
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